主题:An efficient positivity-preserving finite volume scheme for the nonequilibrium three-temperature radiation diffusion problems on polygonal meshes
主讲人:北京大学数学科学学院在站博士后苏帅
时间:2020年11月20日(周五)上午11:00
地点:西南财经大学柳林校区通博楼B412会议室
主办单位:经济555000jc赌船
主讲人简介:
苏帅,北京大学数学科学学院在站博士后,合作导师:汤华中教授。2019年6月博士毕业于中国工程物理研究院北京应用物理与计算数学研究所。主要从事辐射扩散/流体,离子输运等问题的保物理性质格式研究。2019年入选全国博士后创新人才支持计划,参与国家自然科学基金面上项目4项。
内容提要:
In the talk, we propose an efficient positivity-preserving finite volume scheme for the two-dimensional nonequilibrium three-temperature on general polygonal meshes. The scheme is formed as a predictor-corrector algorithm. The corrector phase obtains the cell-centered solutions on the primary mesh, while the predictor phase determines the cell-vertex solutions on the dual mesh independently. Theoretically, our scheme does not require any nonlinear iteration for the linear problems, and can call the fast nonlinear solver (e.g. Newton method) for the nonlinear problems. The positivity, existence and uniqueness of the cell-centered solutions obtained on the corrector phase are analyzed, and the stability of the scheme is proved under some assumptions. Numerical experiments demonstrate the accuracy, efficiency and positivity of the scheme on various distorted meshes.