主题:A positivity preserving characteristic FEM for solving the convection-diffusion-reaction equations on general surfaces(一般曲面上对流-扩散-反应方程的保正则特征有限元方法)
主讲人:新疆大学数学与系统科学学院冯新龙教授
主持人:经济555000jc赌船马敬堂教授
时间:2019年9月21日(星期六)上午10:00-11:00
地点:西南财经大学柳林校区通博楼B412
主办单位:经济555000jc赌船 科研处
内容提要:
In this paper, a positivity preserving characteristic FEM is presented to solve the transport and convection-diffusion-reaction equations on general surfaces. The FEM applied in this work is the surface FEM which solves a variation problem by the linear FEM on a approximate triangulated surface. For the backtracking in characteristic derivative discretization, unlike the cases on the two-dimensional plane, the foots of approximate characteristics may locate in the outer domain of the surface. To determine the value of solution at the foots of characteristics, a new strategy which permits larger time steps is designed instead of the discrete closest point mapping method which has a strict time step restriction. Via the mass lumping technique, the proposed numerical scheme is positivity preserving. The proposed method can also be extended to the problems with nonlinear convection terms. Various numerical examples are performed to demonstrate the validity and accuracy of the proposed method.(本次报告主要针对一般曲面上的输运方程和对流-扩散-反应方程提出一种保正特征有限元方法。该方法可以解决带有非线性项的模型问题。最后通过诸多数值算例验证方法的有效性和精度。)
主讲人简介:
冯新龙,教授,博士生导师
工作单位:新疆大学数学与系统科学学院
研究领域:科学计算、不确定性量化、计算流体力学、图像处理与数据分析、保险精算等。
1998年毕业于新疆大学基础数学专业,获学士学位;2001年毕业于新疆大学计算数学专业,获硕士学位;2007年毕业于西安交通大学数学专业,获博士学位先后在韩国首尔国立大学、香港浸会大学、巴西巴拉那联邦大学、加拿大阿尔伯塔大学从事博士后研究工作和短期访问。拥有中国准精算师资格,曾担任中国核学会计算物理学会理事、中国计算数学学会理事,目前担任中国数学会理事。曾荣获教育部高等院校青年教师奖、自治区科学技术进步奖以及新疆青年科技奖等。曾入选教育部新世纪优秀人才支持计划、自治区杰出青年科技创新人才培养人选等。主持完成10余项国家级和省部级科研项目。已在SISC、MCOM、CMAME、JCP、IJNME、JSC、DCDS、NMPDE等国际著名期刊合作发表SCI论文100余篇。