主题:Global existence and blow up of solutions for pseudo-parabolic equation with singular potential(奇异势伪抛物方程解的全局存在性与爆破)
主讲人:哈尔滨工程大学 徐润章 教授
主持人:555000jc赌船 梁之磊 教授
时间:2023年11月3日(周五)17:00-17:40
会议地点:柳林校区通博楼B412会议室
主办单位:555000jc赌船 科研处
主讲人简介:
哈尔滨工程大学数学科学学院教授,博士生导师,“龙江学者”青年学者,黑龙江省数学会常务理事,黑龙江省青年学术骨干。Advances in Nonlinear Analysis 主编, Applied Numerical Mathematics编委, Boundary Value Problems 副主编; Electronic Research Archive (ERA)编委;The Annals of the University of Craiova - Mathematics and Computer Science series 编委,Opuscula Mathematica编委,《中国工业与应用数学会简讯》编委。 “中罗应用数学中心(CRAM)”创始成员,美国数学科学研究所学术期刊科学顾问
内容提要:
In this talk, we like to report a study in the initial boundary value problem of pseudo-parabolic equation with singular potential, in order to classify the initial data for the global existence, finite time blowup and longtime decay of the solution. The whole study is conducted by considering three cases according to initial energy: low initial energy case, critical initial energy case and high initial energy case. For the low initial energy case and critical initial energy case the sufficient initial conditions of global existence, long time decay and finite time blowup are given to show a sharp-like condition. Also two different strategies are applied to estimate the upper bounds of the blowup time for the negative initial energy blowup and positve initial energy blowup respectively. And for the high initial energy case, the finite time blowup is proved.(我们想报告一项关于具有奇异势的伪抛物线方程的初始边值问题的研究,以便对解的全局存在性、有限时间爆炸和长期衰减的初始数据进行分类。 整个研究根据初始能量考虑三种情况:低初始能量情况、临界初始能量情况和高初始能量情况。 对于低初始能量情况和临界初始能量情况,给出了全局存在、长时间衰减和有限时间爆破的充分初始条件,以表现出类尖锐条件。 还应用两种不同的策略来分别估计负初始能量爆炸和正初始能量爆炸的爆炸时间的上限。 对于高初始能量的情况,证明了有限时间爆破。)